

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



## Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

### Fourier Transform Infrared Spectroscopic Studies on the Effect of Cyclic Adenosine Monophosphate on the Secondary Structure of Human Erythrocyte Membrane Proteins

Yan-Mei Li<sup>a</sup>; Ming Wei<sup>a</sup>; Yu-Fen Zhao<sup>a</sup>

<sup>a</sup> Bio-organic Phosphorus Chemistry Laboratory, Department of Chemistry, Tsinghua University, Beijing, P.R. China

**To cite this Article** Li, Yan-Mei , Wei, Ming and Zhao, Yu-Fen(1998) 'Fourier Transform Infrared Spectroscopic Studies on the Effect of Cyclic Adenosine Monophosphate on the Secondary Structure of Human Erythrocyte Membrane Proteins', *Spectroscopy Letters*, 31: 7, 1537 — 1545

**To link to this Article: DOI:** 10.1080/00387019808001658

**URL:** <http://dx.doi.org/10.1080/00387019808001658>

## PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

## FOURIER TRANSFORM INFRARED SPECTROSCOPIC STUDIES ON THE EFFECT OF CYCLIC ADENOSINE MONOPHOSPHATE ON THE SECONDARY STRUCTURE OF HUMAN ERYTHROCYTE MEMBRANE PROTEINS

**Key Words:** FT-IR, Secondary Structure of Membrane Protein, cAMP, cGMP, ATP

Yan-Mei Li, Ming Wei, Yu-Fen Zhao\*

Bio-organic Phosphorus Chemistry Laboratory, Department of Chemistry, Tsinghua University, Beijing 100084, P.R.China

**Abstract:** In this paper, the study on the effect of cAMP on erythrocyte membrane proteins by FTIR, deconvolution and curvefitting was reported. It was found that cAMP affects the secondary structure of membrane proteins by changing random and  $\beta$ -turn regions to the  $\alpha$ -helix segments. The regulation of cAMP has a best concentration region, during which cAMP has the strongest regulating function. Meanwhile, cGMP and ATP has a negative effect on membrane proteins' secondary structure comparing to cAMP.

### Introduction

The secondary structure of membrane proteins and signal peptides present within a lipid matrix is of considerable interest at the present time<sup>1</sup>. The

activity of membrane proteins affects the bio-process of the cell. It was also reported that cyclic adenosine monophosphate, ie, cAMP, has been implicated in the regulation of cellular metabolism by many hormones other than steroids and has been postulated as playing a role in regulating the cell cycle<sup>2</sup> and transmembrane channels<sup>3</sup>. It was discovered that cAMP controls the activity of many proteins<sup>4,5</sup>. But it is not very clear how cAMP affects the biomembrane proteins, especially their secondary structure. In the present paper, the effect of cAMP level on the secondary structure of human erythrocyte membrane proteins was reported. Considering that there exists the antagonistic effect among the levels of cAMP, cGMP and ATP, the effects of the mixture cAMP-cGMP and cAMP-ATP were also reported. Fourier Transform IR and computeraided analysis (eg. deconvolution, curvefitting)<sup>7,8</sup> were used to study the effect of cAMP on human erythrocyte membrane proteins.

## Materials and methods

Preparation of human erythrocyte membrane see literature<sup>9</sup>.

### Infrared spectroscopy:

Fourier transform IR spectra were recorded on a Perkin-Elmer System 2000 Micro-FTIR Spectrometer assisted by a Perkin-Elmer Co. Gram Research Software. Samples were examined on a CaF<sub>2</sub> plate. Either 100 scans were recorded, 4 cm<sup>-1</sup> resolution and signal averaged.

### Secondary structure determination:

The main features of the procedure were described by Byler and Susi<sup>10</sup>. Overlapping infrared bands were resolved by Fourier deconvolution and Fourier derivation and band-fitting analysis was performed using established procedures<sup>11</sup>.

## Results and Discussion

The secondary structure of the proteins was determined from the shape of amide I band which is conformation sensitive. Besides its important conformational sensitivity, the amide I band was located in a region of the infrared spectrum often free of other bands<sup>12</sup>, allowing the study of membrane proteins. It was therefore intrinsically simpler than amide II band. For these reasons, we have focused our attention on the analysis of amide I band in the rest of this paper.

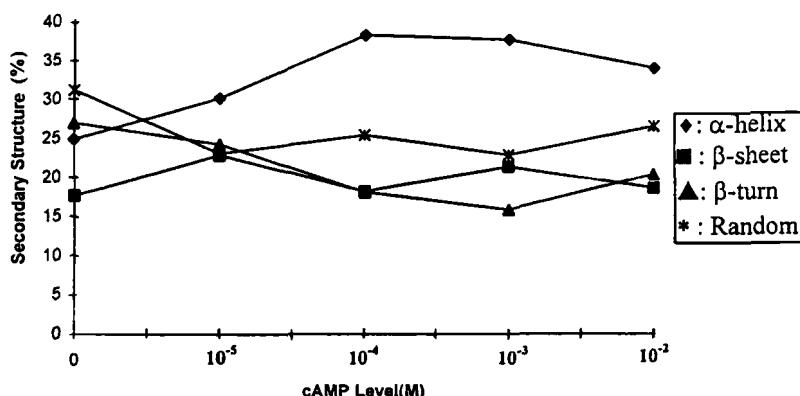
Prior to curve fitting, a straight base line passing through the ordinates at  $1700\text{ cm}^{-1}$  and  $1600\text{ cm}^{-1}$  was subtracted. The spectrum between  $1700\text{ cm}^{-1}$  and  $1600\text{ cm}^{-1}$  was also normalized between absorbances of 0 and 1. A first least-squares iterative curve fitting was then performed with Lorentzian bands<sup>13</sup>. The input limited number of Lorentzian bands of given frequency for this first curve fitting were chosen by our program as follows:  $1691\text{ cm}^{-1}$ ,  $1680\text{ cm}^{-1}$ ,  $1666\text{ cm}^{-1}$ ,  $1658\text{ cm}^{-1}$ ,  $1650\text{ cm}^{-1}$ ,  $1641\text{ cm}^{-1}$ ,  $1630\text{ cm}^{-1}$ ,  $1622\text{ cm}^{-1}$  and  $1613\text{ cm}^{-1}$ . These frequencies were chosen because they often appear in deconvoluted spectra of proteins. The areas of all bands assigned to a given secondary structure were then summed up and divided by the total area. According to the literature data<sup>1,8,14</sup> and our experiment, the frequency limits used were empirically determined and were as Table I.  $3_{10}$ -helix has the similar structure with standard  $\alpha$ -helix, than it was combined into the fraction of  $\alpha$ -helix. Nonstandard helix is a kind of irregular helix (or coil), than it was combined into the fraction of random structure<sup>1,14</sup>.

### Effect of cAMP levels on the secondary structure of membrane proteins

The procedure described to evaluate the secondary structure of membrane proteins yielded a distribution of: 24.9%  $\alpha$ -helix, 17.7%  $\beta$ -sheet, 27.0%  $\beta$ -turn and 31.2% random. After adding  $10^{-5}\text{ M}$  cAMP to the pure membrane-

TABLE I  
Assignment of the FTIR Bands

| Frequency( $\text{cm}^{-1}$ ) | Secondary Structure                 |
|-------------------------------|-------------------------------------|
| 1690                          | $\beta$ -turn                       |
| 1678                          | $\beta$ -sheet                      |
| 1664                          | $\beta$ -turn                       |
| 1655                          | $\beta_{10}$ -helix <sup>1,14</sup> |
| 1649                          | $\alpha$ -helix                     |
| 1642                          | Random                              |
| 1630                          | Nonstandard helix <sup>1,14</sup>   |
| 1620                          | $\beta$ -sheet                      |
| 1612                          | $\beta$ -sheet                      |


protein system, an increase in  $\alpha$ -helix content accompanied by a corresponding decrease in  $\beta$ -turn and random conformations was detected. The increase or decrease was obvious, eg. the fraction of  $\alpha$ -helix increased about 21% and random decreased about 27%. The increase of  $\beta$ -sheet was also detected (see Table II, Figure I). It seemed that cAMP affected the secondary structure by changing some  $\beta$ -turn and random structures (mainly random structure) to the  $\alpha$ -helix and  $\beta$ -sheet structures (mainly  $\alpha$ -helix).

But it was found that cAMP didn't produce a dose-dependent increase in the fraction of  $\alpha$ -helix. When the cAMP level reached  $10^{-3}\text{M} \sim 10^{-4}\text{M}$ , a loss of  $\alpha$ -helix content was detected. It seemed that the effect of cAMP's level on membrane proteins secondary structure was non-monotonic.

The experimental results indicated that the existence of cAMP affected the secondary structure of membrane proteins. Generally, it caused an increase of  $\alpha$ -helix content and a decrease of  $\beta$ -turn and random. The change of  $\beta$ -sheet content was not very great. At the concentration of about  $10^{-3}\text{ M} \sim 10^{-4}\text{ M}$ , the effect of cAMP was the greatest. When the cAMP levels were larger than this

**TABLE II**  
Effect of cAMP levels on the Secondary Structure of Membrane Proteins

| cAMP level (M)     | Reference | $10^{-5}$ | $10^{-4}$ | $10^{-3}$ | $10^{-2}$ |
|--------------------|-----------|-----------|-----------|-----------|-----------|
| $\alpha$ -helix(%) | 24.1      | 30.1      | 38.3      | 38.5      | 34.1      |
| $\beta$ -sheet(%)  | 17.7      | 22.9      | 18.2      | 21.9      | 18.7      |
| $\beta$ -turn(%)   | 27.0      | 24.2      | 18.1      | 16.2      | 20.5      |
| Random(%)          | 31.2      | 22.8      | 25.4      | 23.4      | 26.7      |



**Figure I.** Effect of cAMP Levels on the Secondary Structure of Membrane Proteins

extreme concentration, the effect of cAMP was not so strong. It can be concluded that the effect of cAMP on membrane proteins is, at least in part, by changing random and  $\beta$ -turn regions to the  $\alpha$ -helix segments and the regulation of cAMP has a best concentration region, in which cAMP has the strongest regulation function. This might be one way that cAMP controls the activity of many proteins(or enzymes).

#### Effect of cAMP-cGMP mixture

cGMP is known to have the different function comparing to cAMP during bio-process. Goldbery<sup>6</sup> and his co-workers have studied the function of cAMP

and cGMP in the regulation of cellular metabolism. He considered that the dynamic equilibrium between cAMP and cGMP is more important than the single cAMP levels or cGMP levels. Based on this view and some other experimental facts (unreported results in our group), the effect of cAMP-cGMP mixtures were also studied. The results were listed in Table III.

It can be seen from the results that when the amount of cAMP was much more than that of cGMP, ie. in higher cAMP/cGMP ratios, the effect of cAMP-cGMP mixture was almost the same with the effect of pure cAMP. ie. it caused an increase of  $\alpha$ -helix and a decrease of  $\beta$ -turn and random. The change of  $\beta$ -sheet was still not very notable. But when the amount of cGMP increased and reached higher levels, ie. in lower cAMP/cGMP ratios, the mixture gave negative effect compared to pure cAMP. ie. it caused a decrease of  $\alpha$ -helix and an increase of  $\beta$ -turn and random. When the ratios of cAMP/cGMP were in the region of 3:1~1:3, the mixtures had no obvious effect on the secondary structure of membrane proteins. It can be seen that cGMP has a negative function on the effect of the secondary structure of membrane proteins compared to cAMP. During the life process, the activity of some proteins might be regulated by the dynamic equilibrium of cAMP and cGMP.

#### Effect of cAMP-ATP mixture

It can be said that ATP is the source of cAMP. When cAMP was needed, some ATP can be converted into cAMP with the help of enzymes. During life process, cAMP and ATP are also in a dynamic equilibrium. The equilibrium point might also affect the bio-process. Based on this point of view, the effect of cAMP-ATP mixture on the secondary structure of membrane proteins was also studied (Table IV).

The results indicated that ATP had a negative effect on membrane proteins' secondary structure compared to cAMP. ie. during the existence of large

TABLE III

Effect of Different cAMP/cGMP Ratios on the Secondary Structure of Membrane Proteins

| cAMP/cGMP*         | Reference | 5:1  | 3:1  | 1:3  | 1:5  |
|--------------------|-----------|------|------|------|------|
| $\alpha$ -helix(%) | 29.5      | 39.1 | 30.0 | 31.3 | 25.0 |
| $\beta$ -sheet(%)  | 20.4      | 19.4 | 21.7 | 20.9 | 19.1 |
| $\beta$ -turn(%)   | 21.5      | 15.6 | 20.5 | 21.2 | 25.3 |
| Random(%)          | 28.6      | 25.9 | 27.8 | 26.6 | 30.6 |

\*: The concentration of cAMP was kept constant ( $10^{-4}$ M)

TABLE IV

Effect of Different cAMP/ATP Ratios on the Secondary Structure of Membrane Proteins

| cAMP/ATP*          | Reference | Pure cAMP | 3:1  | 1:3  | Pure ATP** |
|--------------------|-----------|-----------|------|------|------------|
| $\alpha$ -helix(%) | 37.7      | 45.8      | 34.8 | 31.0 | 25.8       |
| $\beta$ -sheet(%)  | 17.0      | 11.8      | 17.1 | 17.0 | 16.4       |
| $\beta$ -turn(%)   | 21.0      | 20.9      | 22.8 | 23.6 | 27.2       |
| Random(%)          | 24.3      | 21.5      | 25.3 | 28.4 | 30.6       |

\*: The concentration of cAMP was kept constant( $10^{-4}$ M)

\*\*: ATP's concentration:  $10^{-4}$ M

amount of ATP, some  $\alpha$ -helix regions would be changed to  $\beta$ -turn and random obviously. An increase in the amount of ATP resulted in the increase in the change of protein conformation. When ATP was converted into cAMP, the effect on the secondary structure was also changed. During the life process, the secondary structure of proteins and then even the activity of the proteins might be controlled by adjusting the ratio of cAMP/ATP. ie. switch on or off the change from ATP to cAMP.

## Conclusion

cAMP affects the secondary structure of membrane proteins by changing random and  $\beta$ -turn regions to the  $\alpha$ -helix segments. The regulation of cAMP

has a best concentration region ( $10^{-3}$ M ~  $10^{-4}$ M), in which cAMP has the strongest regulation function.

cGMP and ATP have negative effect on membrane proteins' secondary structure compared to cAMP. During the life process, the activity of some proteins might be regulated by the dynamic equilibria between cAMP and cGMP or cAMP and ATP.

### ACKNOWLEDGEMENT

The authors would like to acknowledge the financial support from the National Science Foundation and Tsinghua University.

### REFERENCES

- 1.F.Kennedy, M.Crisma, et al (1991): *Biochem.* **30**,6541-6550
- 2.G.A.Morrill, F.Schatz, A.B.Kostellow & J.W.Poupko (1977): *Differentiation* **8**,97-101
- 3.D.J.Barlow & J.M.Thornton (1988): *J. Mol. Biol.* **201**,601-636
- 4.H.DeGrazia, J.G.Harman, G.S.Tan & R.M.Wartell (1993): *Biochem. Biophys. Acta* **1158**,146-154
- 5.N.D.Goldberg, et al(1975): *Advanced in Cyclic Nucleotide Research*. Ravea Press (New York) **5**,307-316
- 7.J.Villalain, J.C.Gomez-Fernandez, M.Jackson & D.Chapman (1989): *Biochim. Biophys. Acta* **978**,305-312
- 8.E.Goormaghtigh, V.Cabianx & J.M.Ruysschaert (1990): *Eur. J. Biochem.* **193**,409-420
- 9.Y.M.Li, X.H.Wang, Y.F.Zhao, J.Y.Yu, M.Q.Wan & P.Zeng (1993): *J. Biol. Phys.* **19**,85-94
- 10.D.M.Byler & H.Susi (1986): *Biopolymers* **25**,469-487

- 11.R.D.B.Fraser & E.Suzuki (1969): *Anal. Chem.* **41**,37-39
- 12.V.Cabiaux, R.Brasseur, R.Wattiez, P.Falmagne, J.M.Ruysschaert & E.Goormaghtigh (1989): *J. Biol. Chem.* **264**,4928-4938
- 13.R.N.Jones & R.P.Young (1976): *Natl. Res. Counc. Can. Bull.* **13**,25-39
- 14.S.Krimm. et al (1986): *Adv. Protein Chem.* **38**,181-188

Date Received: April 22, 1998

Date Accepted: June 16, 1998